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Abstract

The purpose of this research is to study the effects of

material properties, thickness ratio, aspect ratio, boundary

conditions, and ply layup on the reactions of a transversely

loaded rectangular composite plate. Geometric

nonlinearities, i.e. the von Karman nonlinear plate

equations, and through the thickness shear effects were

included. Both geometrically linear and nonlinear solutions

were done. This research was done using an existing finite

element code with a four-noded, 28 DOF rectangular element.

All plates were 48 plies thick to be representative of

a "real world" application. The ply layups were chosen to

be a representative sampling of layups used in the field and

had at least 50% of the plies in the 0* direction.

Material properties had the largest effect when the

plate was thick. The linear solution approaches the

classical laminated plate theory solution as the plate gets

thin. The nonlinear solution deflects much less than the

linear solution because the higher order terms significantly

stiffen the plate. For a clamped plate the linear and

nonliear solutions are comparible until the plate is quite

thin.

Aspect ratio has a large effect on the plate for an

isotropic material. However, in the ply layups

investigated, aspect ratio had much less effect because half

the fibers were oriented in the direction of the short

dimension of the plate.

Ply layup did not have a great effect on the

deflections of the plate. This occured because all the

layups chosen had at least half the plies oriented in the

same direction.

viii



I. INTRODUCTION

Advanced composite materials are being used

increasingly in many engineering and civilian applications,

from aerospace structural components to sports equipment.

The high stiffness to weight ratio, coupled with the

flexibility in the selection of the lamination scheme, which

* can be tailored to match the design requirements, make

laminated composite plates ideal structural components for

many applications. The increased use of laminated plates in

various structures has created considerable interest in

their analysis.

In many situations, simplifying assumptions can be made

to help the analyst get timely and accurate results. For

* many structural components, only geometric nonlinearity may

be important. For these cases, the structural components

experience only small material strains under load but may

fail catastrophically due to their geometric configuration.

* A large class of structural systems may be accurately

represented based on nonlinear geometrical, small strain,

and linear elastic material behavior.

Many of the nonlinear displacement terms may be

considered negligable in a geometrically nonlinear analysis

depending on the specific situation. An accurate

load-displacement charactarization of a flat plate is based

* on the von Karman equations where many nonlinear rotational

terms have been discarded as negligable. This

characterization gives an accurate representaion for plate

deflections that are many times the plate thickness. This

formulation is valid for only moderate rotations and is

called an intermediate nonlinearity approach.

1-i
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Laminated plates also have an additional complication.

Three dimensional effects can become very important because

of potentially large directional variations of stiffness

properties due to tailoring. Also, the problem of

delamination consideration, which only now is considered due

* to low velocity impact, requires a higher order theory to

capture the transverse shear stress terms. Whereas

classical two dimensional assumptions may be valid for an

identical plate structure consisting of isotropic materials,

they may lead to large errors for orthotropic materials.

Therefore, through the thickness effects should be

considered when analyzing composite materials.

* The general class of problems that include large

displacements and intermediate rotations, small strains,

linearly elastic material behavior, and parabolic transverse

shear distribution is addressed in this thesis.

Unfortunately, closed form solutions are very limited and

cannot include all of the desired features. Therefore, the

finite element numerical approach is chosen as the solution

* technique in this research.

Previous Work

Previous related work is presented from two areas.

* First, linear and nonlinear techniques for analyzing plate

structures are discussed. Second, finite element numerical

solution techniques are discused.

Plate Theories. The classical linear approach, known

as Kirchhoff flat plate theory (41) is based on the

following assumptions: 1) the plate is thin, 2) the

displacements and rotations are small, 3) normals to the

* plate datum surface before deformation remain normal after

deformation, and 4) transverse normal stress is negligable.

1-2



The third assumption effectively negleuts transverse

shear strains although the transverse shear stresses must be

included in the equilibrium equations. Since the plate is

thin, it is assumed to be in a state of plane stess, i.e.

the transverse normal stress is assumed to be negligibly

small. Also, because the plate is thin, the effects of the

normal tranverse strains are often neglected compared to the

effects of the inplane strains, i.e. the length of a normal

to the datum surface is often assumed to remain constant

throughout deformation. The normal transverse strain can be

included in the analysis through the constitutive relations.

In deriving the equilibrium equations, statically equivalent

• forces and moments acting on the datum surface are defined

by integrating stresses through the thickness.

As mentioned previously, the Kirchhoff flat plate

theory applies to a plate so thin that all transverse

deformation effects, i.e. transverse stresses and strains,

can be neglected. As the plate becomes thicker relative to

its inplane dimensions, these transverse effects become more

* pronounced, especially the transverse shear deformations

(10,12,13). The first theories that included the tranverse

shear deformations relaxed the assumption on the deformed

normals to the plate datum surface. Now, the normal is

permitted to rotate so that plane sections perpendicular to

the datum surface remain plane but not necessarily

perpendicular. The plate strain displacement relations are

derived from kinematics and the 3-D strain displacement

relations. The transverse shear is obtained by including

independent degrees of freedom in the kinematics. The plate

is fully described by the behavior of the datum surface and

* therefore these approaches represent 2-D theories (32).

The shell kinematics developed by Bassett, as discussed

1-3
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in (8), express the displacements as an infinite power

series in the thickness parameter or coordinate.

Hildebrand, Reissner, and Thompson CHRT) (8) introduced

truncated Bassett kinematics to analyze thin elastic

orthotropic plates and the importance of the transverse

* stresses and strains. HRT found that the effects of the

second order displacement terms on the transverse shear

deformation were negligible. Additionally, terms in the

transverse displacement that resulted in nonzero transverse

normal strains were found to be negligable. Reissner used

these kinematics to analyze plates (39). Mindlin similarly

included rotary inertia terms in the dynamic analysis of

* plates (15).

The Reissner-Mindlin (RM) kinematics do not satisfy the

transverse shear boundary conditions on the top and bottom

surfaces of the plate since a constant shear angle through

the thickness is assumed, i.e. plane sections remain plane.

Because of this, the theories based on these kinematics

usually require shear correction factors to satisfy

* •equilibrium.

Levinson (14), Murthy (16), and Reddy (32) have

developed theories that include cubic terms in the inplane

displacement kinematics which produce zero transverse shear

stresses at the top and bottom surfaces of the plate.

Satisfying zero transverse shear stresses on the top and

bottom surfaces of the plate gives a parabolic shear strain

distribution through the thickness, thus agreeing more

closely with linear elasticity. The number of variables in

the kinematics is equal to that in the RM theory, but shear

correction factors are not needed.

* The preceding discussion applied primarily to plates

made of isotropic materials. HRT C8) were the first to

I-4
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apply plate equaitions to an orthotropic material. Reddy

(32) discusses anisotropic laminated plate structures

including various transverse shear deformation treatments in

his text.

The simpifying assumption of laminated anisotropy is

* often used to apply a 2-D theory to plates made of layers of

composite materials (32), In this approach, the individual

properties of the composite elements, the fibers and the

matrix, are "smeared- and thus each lamina is treated as an

orthotropic material. Also, laminated anisotropy assumes

perfect bonding between layers, i.e. the interply adhesive

has infinitesimal thickness but infinite stiffness. This

* approach leads to classical laminated plate theory (CLPT).

The references by Jones (1i) and Ashton and Whitney (2) are

thorough presentations of CLPT. CLPT relies on the

Kirchhoff assumptions on the datum surface normals; however

~ toth references point out that the transverse shear

deformation is more significant in laminated anisotropic

structures over similar isotropic constructions.

Yang, Norris, and Stavsky (48) generalized the RM

theory to laminated anisotropic plates. Whitney and Pagano

(47) were the first to apply it to composite plates. Thick

composite plate closed form solutions were developed by

* Reddy and Chao C35).

Reddy (32,38) extended the cubic kinematical approach

to analyze laminated anisotropic plates and he and Soldatos

applied them to solve several linear static and buckling

problems (26,33,38).

Pagano (20,21,22,23) and Srinivas and Rao (39)

developed some exact solutions of 3-D elasticity equations

* governing composite plates that have been used to validate

these theories. They conclude that CLPT gives fairly good

1-5



approximations for both the displacements and stresses if

the plate is thin. Thinness, as defined for layered

composite plates, not only considers length to thickness

ratios but also the degree of anisotropy. Transverse

stresses are calculated from the eqilibrium equations and

* the CLPT inplane stresses. Higher order shear theories do

not give much better transverse stress results but

displacements show a marked improvement over CLPT for the

thicker plates. Transverse stresses are calculated best

from equilibrium instead of from the constitutive relations

(11).

Much af the previously mentioned research in the

*• analysis of composite plates is limited to geometrically

linear problems. Reddy (31) concludes this may have been

due to the complexity of the nonlinear partial differential

equation associated with the large deflection theory of

composite plates. Approximate solutions to the large

deflection theory (in von Karman's sense) of laminated

composite plates were attempted by Whitney and Leissa (46),

Bennett (4), Bert (5), Zaghloul and Kennedy (49), and Noor

and Hartley (17). Zaghloul and Kennedy (49) used a finite

difference successive iterative technique in their analysis.

In all of these studies, with the exception of (17), the

* transverse shear effects were neglected. The finite element

employed by Noor and Hartley (17) includes the effect of

transverse shear strains; however, it is algebraically

complex and involves a large degree of freedom per element

and thus one can preclude the use of such elements in the

nonlinear analysis of composite plates. The finite element

developed by Reddy (30) was extended to nonlinear bending of

* composite plates (36,37).

Finite Element Plate Applications. General 3-D

1-6



elements could be used to model plate structures.

Unfortunately, since the plate is thin, numerical ill

conditioning results. Also, using 3-D elements would

involve many degrees of freedom (DOF) that may not be

necessary. Consequently, elements that are specifically

* designed for plate structures are developed.

The most popular approach is to degenerate the 3-D

displacement relations to form the element. This first

appeared in the form of the Ahmed element (1). In elements

of this type, transverse displacements and rotations are

treated independently and therefore, are well suited to

Reissner-Mindlin shear deformation theories. Also, normal

* stress is assumed to be zero consistent with most plate

theories. However, it develops serious shear "locking"

problems as the plate becomes thinner. Consequently, this

method is generally used with some means to remedy the

locking phenomenon. Zienkiewicz, Taylor, and Too (50)

introduced reduced or selective integration to alleviate

these shear locking problems.

* Application of material anisotropy in finite elements

was done by Pryor and Barker (27) who developed a linear

flat plate element based on laminated anisotropic plate

theory including RM shear deformations. They suggest an

approach where each layer of the laminate has rotational

degrees of freedom which allows the satisfaction of

transverse stress continuity at each laminate boundary.

This idea has been applied using linear theory and the

Ahmad element by several investigators (9). Recently,

Palazotto and Witt (25) extended the approach to a

geometrically nonlinear shell formulation and applied it to

* flat plates. Hinrichsen and Palazotto (9) used a cubic

spline function to represent the transverse displacements of

1-7
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a flat plate and found that while giving a higher order

approximation to displacements, the equations were

simplified over the work of (25) which essentially used a

quadratic spline.

Shear locking may be reduced in finite element

• formulations by using higher order kinematics to represent

the displacements through the thickness. Putcha and Reddy

(28) used cubic kinematics to formulate a mixed element for

nonlinear anisotropic plate analysis. For many of the cases

examined, the element did not lock as its thickness was

decreased even using exact integration.

The simultaneous nonlinear equations that result from

* the finite element discretizations are typically solved

using direct iteration or Newton-Raphson method. Thorough

overviews of solution techniques can be found in Stricklin

and Haisler (43), Bathe and Cimento (3), Riks (40), and

Waszczszyn (45). The direct iteration is generally not used

because it often diverges, and the Newton-Raphson, without

modifications, is not used because it is inefficient and

• -sometimes unreliable. A form of the Newton-Raphson method

that is guaranteed to converge increments many small load

steps instead of a single increment to reach a target load.

One way to make this appr.oach more efficient, is to not

update the tangent stiffness matrix with each iteration.

This form is called the modified Newton-Raphson method.

As can be seen, much work has been done in the analysis

of composite flat plate structures. Unfortunaly, not as

much attention has been placed on studying their nonlinear

response. The research effort here will focus on

geometrically nonlinear composite plate behavior including

• the very important influence of transverse shear

deformation.

1-8
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The research presented here used a finite element code

developed by Dennis (7). This code was designed to analyze

a fully nonlinear cylindrical shell. However, since a plate

can be modeled as a cylindrical shell of infinite radius,

this code can be used for flat plate analysis. The code

-* includes through the thickness shear effects and the von

Karman geometric nonlinearity equations as applied to

composite materials.

1-9
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II. THEORY

Reference (7) contains a very complete development of

the equations for a finite element code for a fully

nonlinear cylindrical shell. Within this code there is also

the capability to analyze both the linear and the von Karman

plate problems studied in this research. Both types of

• analysis include the through the thickness shear effects.

This causes the linear solution to be different than the

classical plate theory solution. This also causes the von

Karman solution obtained to be different than the

"'classical" von Karman plate solution. The highlights of

the derivation are repeated here and, whenever possible, the

derivation is related to the von Karman plate problem. The

* linear plate problem is a simplification of the von Karman

plate problem.

Constitutive Relationships

We begin by assuming a linear constitutive relationship

between stresses, a ,, and strains, c,,, of the form

= jkt C i,jk,l = 1,2,3 (2.1)

where.ajkL are constants of the elasticity tensor.

In this research, we deal with materials that are

transversely isotropic with respect to planes parallel to

the 2-3 plane. In this case Eqn (2.1) becomes

2-1



oI  C I C12 C13 0 0 0

2  C12 C22 C23 0 0 0 r

3 C 13 C23 C33 0 3.2)

o4 0 0 0 C44 0 0 4

0 0 0 0 0 C5 0 rts

0o 0 0 0 0 0 Cos CS

where contracted notation is introduced

01m 0III 02022I %033, 04=023' 05=013, 045012 (2.3a)

C 1 ClI, C2= 2 2 , 3 =C 3 3 , C 4 =2c 2 3, C 5 2c 1 3 , 6 =2c 1 2  (2.3b)

Transverse isotropy assumes E 2 =E 3 and P 1 2 -v 13 and the

C written in terms of engineering constants become

• 1 - V 2 1 + V23

C = E I 2 3  C = C = E v2111i 1 ' 12 13 ± 2

C 3 3 -C 2 2 - E2 A V (2.4)

C23 =E 2 23 1 2 2 1 , =G C G C G
C23 = E2 A 44 C4 = G23' C55 = 013' C66 = G12

I 2 -V2 - 2v1 vP

-- 212 21 - 2 3  1 2 2 1 2 3

* By assuming an approximate case of plane stress, i.e. a3=0 ,

Eqn (2.2) becomes

2-2
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a, Q11 Q12 0 0 0

a2 Q2 Q22 0 0 0 2

ae 0 0 Q66 0 0 C o  (2.5)

a4 0 0 0 Q44 0 C 4

* ae 0 0 0 0 Q55 C5

where Q -C - CL3Cj3
SuJ C 3 3

For transverse isotropy it can be shown that

• Q 1 1 = E 1 A Q 1 2 =V 2 1 E2/A. Q 2 2 = E 2 "A,

Q16 = G12' Q44 23' Q55 : 13' (2.6)

• A =i1-iv2z
A I V 12 V21

For a plate constructed of layers of transversely

orthotropic material, the fibers are generally oriented at

some angle away from the geometric axis of the plate.

Therefore, the constitutive relations of Eqn (2.5) must be

transformed into the plate coordinates resulting in Eqns

* (2.7) and (2.8).

{a 1k lY 1 uI ,Il
S212 U2 2 26 C2 (2.7)
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4 (m14 75]jC 2.86)
55 55

Where the _ _j(i,j-1,2,6) and -mnCmn = 4,5) are elements of

symmetric arrays of transformed stiffnesses for the k t ply.

Kinematic Relations

We begin the derivation of the kinematic relationships

by assuming a truncated power series inplane displacement

function. This will lead to the desired parabolic

transverse shear strains. This displacement function was

* developed in (28) and is shown in Eqn (2.9) where uO, W,

0., and are functions of the inplane coordinates only:

u - u + + <2 + r(2.9)

where u (I = 1,2) are total inplane displacements,

u is the translation displacement of the datum

surface,

< is the through the thickness coordinate,

#L is rotational displacements due to bending, and

eu9,i are unknown DOF to be determined.

* We then assume that the transverse shear strains,

C,=C,=O on the surface. For an orthotropic material, this

implies that the transverse shear stresses, a4,=a=O on the

surface. For example, for a flat plate of thickness h with

CK' (i=1,2) representing the inplane coordinates

2-4



€ -in --.' (2.10)

W - [ I1 + 2KO1 + 3 2,1 + U;,:i + W3,i + 23,

+ 3 ]k-±h2M

Where the subscript ,a represents partial differentiation of

the variable with to respect to a. For Eqn (2.10) to hold

true at the top and bottom of the plate, 0 1 =W,=03=0. Also,

based on (8) we neglect <2o3 term in u3 as small compared to

u;. Now solve Eqn (2.10) for 01:

+ 3r *32 + u; 1 1 1 Uh, 0 (2. l0a)

+ 3(h/2)2 2 1 + u = 0

1 --- [u;., + W]
3h2

This leads to parabolic transverse shear strain shown in Eqn

(2.11):

32 1 [ U; 1

a similar approach can be useg on r, This leads to the

kinematic equations used in this research as shown in Eqn

(2.12.):

2-5
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-M[] (2.12a)u1 ~3 2 u+ 1 1 '

2 - 4 + w, (2.12b)
u 2 - v 2- ( W2 + w,2

u3 = w (2.12c)

The von Karman plate strain displacement relations are given

for the inplane strains by Eqn (2.13):

6, U + I W 2

1,1 2 1

C U + L . (2.13)

2 2,2 2 '2

8 1,2 2,1 '1 '2

These come from the Green's strain tensor (24) shown in Egn

(2.14):

2e = 2c + (ck + )(C k + ) (2,14)

* where,
e = Greens strain tensor

2c. Wu + u (2.14a)I.J L,J J,L

S2o -u - u. (2.14b)Lj Lj JL

Then, assume the following: 1) strains are small, so c kL

* terms can be neglected, 2) rotations relative to the x and y

axis are moderately small, this allows c k ok and k k

terms to be neglected, and 3) rotations relative to < are

negligable, this allows c33C33 term to be neglected. If one

• Substitutes Eqn (2.12) into Eqn (2.13) and sets e =c, the

following is obtained

2-6



U, + r, + 3 k~w, + w )+ 1 2

2 '2 ~ 2 , 2  22k~ 2,2 t'2 (.5

*1 ' ,2 + V, + (CW1 2 + W,1)

+ < k2w,12+ W 1 ,2 + W2,1 + w,

*where k-- 4- 2
3h

Notice that the nonlinear terms (i~. 1 2 1 2 and w, ,w,)

are functions only of the inpiane coordinate and not the

transverse coordinate <.

If' Eqn (2.15) is rewritten in a more convienent form

for matrix manipulations to be conducted shortly, the

* following is obtained where p is handled using repeating

subscript rule

I C + <px1 p (2.16)

* where

a ,1 *~ 2  
(2.16a)

X11 ,W1'1(2. 16b)

M1 - k(w,,, + . 1 1J) (2.16c)

C 2 = + <p, 2 p (2.17)
where

CO V, L W2(2.17a)

* 21 W'2,2 (2, 17b)

X23 k(w,22 + W2,2) (2.17c)
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X2 pCp-2,4,5,6,7 )- 0

C6  C; + Px6p (2.18)

where

C6 - U1 2 + VI + w, Vw'2 (2.18a)

X61 W 1, 2 + C2,1 (2.18b)

x 6 3 = k(2w, 1 2 + I1,2 + W2 , 1 ) (2.18c)

x6p(P-2,4,5,6,7) - 0

Also, it can be readily seen from Eqn (2.11) that

C= r + <Pxsp (2.19)

where

;= w, + 4'1 (2.19a)

x52 = 3k(w,l + j1 ) (2.19b)

x 5p(p--1,3,4,S,6,
7 ) - 0

and

c4 + <Px4p  (2.20)

where

< = w, 2 + W2 (2.20a)

X4 2 , 3k(w,2 + W'2> (2.20b)

x4p(p=,3,,5,6,7) = 0

Plate Potential Energy

The strain energy terms are given by

*I- U - V (2.21)

where
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U - internal strain energy
V - work done by external forces

* we divide the internal strain energy into two parts (i.e.

U-U 1 +U 2 ) where U. represents the inplane terms and U2

represents the through the thickness terms. Eqns (2.7),

(2.8), (2.16), (2.17), (2.18), (2.19), (2.20), and (2.21)

give the internal strain energy of the plate

°1 " • C! + Pxlp )  2( + "pjC
2 Jr) .f [ a.j +IP + '722c'; 2p

• Oh

+ 2 2 (1 + <Pxlp)(c; + <rx(r) )2

(C +2 <P~)C16 6 ,Pjt~cr

+ 2 172 6 (c; + <Px2p)(c; + rx 6 r) ] d~dO (2.22a)

02 2 f Uh + 24)2 + 755(c; +

+ 2 145 (C + <2 X4 2 )(C5 + <2 x5 2 ) ] d~df (2.22b)

where,

* p,r = 1,2,3

Qrj generally vary as a function of < since a

laminate is constructed of plies with different fiber

orientations, and

0 represents the plate middle, or datum, surface

area.

Also, if one combines Eqns (2.16), (2.17), and (2.18), the

following is obtained
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C so + K z (2.23a)

0 where

C{ } 2 C{ E ,2 , z (2.23b)

and

U,1 02 116 1
Q [ 22 726

166

We can now represent the first part of the internal strain

energy more convieniently thus

U1 =& J. Jh(Q)T& drdfO (2.24)

Eqn (2.24) can be rewritten in terms of the plate mid

surface where the < dependence has been integrated out by

defining a series of elasticity arrays

S. 1 fi, (u 1 + u 2 + u 3 ) d (2.25)
0 U 2

where,

fh&T d - o c A (2.25a)

u 2 = fh 2 9OT Q K Z d< = f 2 c* 17 x <P d<

2 (x B + xD + x ) (2.25b)1 1. 1 tj L2D t 3 Lj

2-10



U3 -li fhe KQ Z dr,-fxx a'. XL r d r

M X j- xi Dij + 2xj, x 2 Ej + (2x j xt 13 + j2Xu2)Ftj

+ 2x x. G. (2.25c)
*~ j2 L 3 L.J

where i,J - 1,2,6 and p,r - 1,2,3 (repeating subscript

rule again applies) and

0
[A ,B j,D B j,E j j,F ,Gj] - f 1. [ 1 2,<3,<4,<5] dr

(2.25d)

Substituting Eqns (2.16), (2.17), and (2.18) into Eqns

C2.25a), (2.25b), and (2.25c) results in the following:

uI = cj c A.j (2.26)

* u 2 = 2c((iBi + (xB 3Eij) (2.27)

3 , Mja4ilDij + 2 xjlXi3Fij (2.28)

* •The von Karman plate relations only retain the

nonlinear displacement terms in the transverse displacement,

w. Note that only cubic and quartic terms will result in

nonlinear terms in the equilibrium equations (6p=O). The

only cubic and quartic terms in w come from (2.26) and

(2.27). Also, for symmetrically arranged laminates (i.e.

the case in this research) Bij = E. 0 for all i,j.

• Therefore,

Ul ' c' A. dO (2.29)

and with a similar treatment as UI, U2 becomes

2-11

0



* (C;n Amn +Cm2Dmn + Xn2om2Fmn) dD (2.30)

where

2 4
[Amn" Dmn, Fmn] ' fh[L < Qmn d< m,n = 4,5

Now we have all the pieces in place for the "modified" von

Karman approach. Modified in that it includes the through

the thickness shear terms.

Finite Element Solution

The first part of the derivation is independent of the

particular element chosen. The second part concerns the

* specific element used in this research. We begin the

element independent portion of the derivation by developing

an expression for the strain energy of the form

* qT~ N1  N T

lp -T K + N-1-+ -N ] q - qR (2.31)

where,

q is a column array of nodal displacements,

R is a column array of nodal loads,

K is an array of constant stiffness coefficients,

N1 is an array of stiffness coefficients that are

• linear in displacement, and

N 2 is an array of stiffness coefficients that are

quadratic in displacement.

Taking the first variation if Eqn (2.31) gives

6Fp = 6qT K + -N2 +
2-L3 q- (2.32)

S= 6qT F(q) - 0
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F(q) represents the equilibrium equations For an arbitrary

and independent 6q

F(q) - 0 (2.33)

F(q) - K + + -L I q - R - 0 (2.34)

Eqn (2.33) can be expanded in a Taylor series giving

* OF
F(q + Aq) = F(q) + - Aq + .... - 0 (2.35)

dq

Now neglect higher order terms because Aq is small and

* rearranging gives

E Aq - -F(q) (2.36)o-q

S[ K + N + N2 J Aq = -F(q)

KT Aq - -F(q) (2.37)

where, KT = tangent stiffness matrix

KT = K + NI + N2  (2.38)

Eqn (2.37) is solved in an iterative manner by a

Newton-Raphson technique. The current values of q are

inserted in Niand N2 on both sides of Eqn (2.37) and the

ensuing linear equations are solved for Aq. Aq is then

added to q and the new q is inserted into Niand N2again and

• so on. This is continued until the RHS becomes arbitraily

small.

The preceeding derivation assumed a definition of K,

N, and N2 such that these terms repeated themselves in the

first variation (i.e. Eqn (2.31) to Eqn (2.32)) and aqain in

the Taylor series expansion (i.e. Eqn (2.33) to Eqn (2.35)).
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Rajasekaran and Murray (29) and Dennis (7) have developed a

procedure which insures this repetition. The overall

technique is shown here for a "modified" von Karman flat

plate. For a more detailed development see the references

listed above.

* We begin by dividing each strain component of Eqns

(2.16), (2.17), and (2.18) into linear and nonlinear parts:

LT d + L dT  H d
.2 (2.39)

TMx~= T d + L d T  H dXip p i 1 p i d

where .Li(j = 0,1,2,3,4,5,6,7) are column arrays,

.Hi are symmetric arrays,

i - 1,2,6 and p - i to 7, and

dT is the displacement gradient vector.

dT = {u u,1 u,2 v v,I v,2 w w,1 w, 2 W,1 1

W, 2 2 w,1 2 V. W1,1 WI, 2 V2 W2 ,1 V2 ,2 } (2.&0)0240

Each Liare 18xl column arrays and each Hiis an 18x18

array. From Eqns (2.16), (2.17), and (2.18) it can be seen

• that

oL (2) = 1

oL2(6) = 1

oL6C3) = oL 6 C5) = 1

0La (14) = 1

1L2(18) 1 1

1LG(15) = L6 C17) = 1 (2.41a)
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0

3 1 (10) - LI(14) - k

* 3 L 2 C11) - 3L 2 (18) -k

3 LG(12) -2k, 3 La(15) - 3 La(17) - k

oH1: (8,8) - I

OH2 : (9,9) - I 2.41b)

OHO: (8,9) - 2

where the number in the parenthesis denotes the position of

the given value in the particular array. All other

positions are zero.

Now substituting Eqn (2.39) into Eqn (2.29), which is

repeated here, one obtains (recall these expressions are for

inplane strain energy using strain at the datum surface)

U1 = f c* c Aij dQ (2.29)
1 2 1

gives

U1  d T + + dT dOd (2.42)

where = A.. oL LT (2.43a)

A . L dT H (2.43b)

N-A.. dd H 2.43c)R 2= Aij AH d d T o Hj(24c

and the repeating subcript rule again applies.

Unfortunately, not all these terms show the required

repetition when the variation and derivative are taken.

That is, new terms will result. In order to get required

repititions, the following substitutions are made:

In Eqn (2.43b) let
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L[ d H -. L dT H + dT L H + H d L1 (2.44)
0L di~ 0 3 0L d i~ 0 d iL 1~ 0H 0~

and in Eqn (2.43c) let

H d dToHI . H ddTo H + dToH d H +
H dd0 3O O0j 2 0L t 0J

ddTH j +. dT H d Hj (2.45)

With these substitutions, Eqn (2.42) can be rewritten

U 1  J dT [+ N, + N2]d cWl (2.46)
21  -

The tranverse shear energy terms are handled in a

similar manner. These are much simpler because the

tranverse shear terms are linear in displacement and

therefore all H terms are zero. Therefore, let
Sm

0 ST dEm 0 M

m = 4,5 (2.47)

ST d42m 2 m

From Eqns (2.19) and (2.20) it can be seen that

S 4(9) - 4 (16) 1

oS (8) 0 oS 5 (13) = 1

(2.48)

2S4 (9) 2 S 4(16) = 3k

2S 5(8) = 2S 5(13) = 3k

Because these strains are assumed to be linear, strain

energy terms brought about by through the thickness shears

are only given for . and N 2 are zero. Thus, by
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substituting Eqn (2.47) into Eqn (2.30) one obtains the U2

internal energy function

U=1 fd [ Afl OS S 2mn OSmST FnSm 2 sT d dQ

(2.49)

The repeating forms for the first variation and Taylor

Series expansion which are added to K are formed by making

the substitution below:

S ST - S ST+ SS T p,r- 0,2 (2.50)

p m r n 1P L r i r L P pj , ( .0

The last step in the element independent portion of the

derivation is the discretation of the domain. This is done

by approximatinC the continuum displacements by

interpolation, or shape functions. So let

u q (2.51)

where,

= vector of continuum displacements

• A' = array of shape functions

q = nodal values of displacements

Then, the displacement qradient vector d is approximated

from Eqn (2.51) by

d - V q (2.52)

where D is the array of shape functions and their

* derivatives. D is defined for a specific element and will

be derived subsequently. Substituting Eqn (2.43) into Eqn

(2.46) and including the tranverse shear terms of Eqn (2.49)

in K, the following potential energy function is obtained
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0

n K + -L_ +T- (2.53)

P 2 3L

In Eqn (2.53)

derivation. This part is element dependent. The continuum

displacements are approximated by the nodal displacements

and shape functions. These shape functions are chosen such

that the following requirements are met;

Now continuous displacements within an element,

(2) the element must be able to represent constant strain,

M3 rigid body modes are present in the assumed

displacements,

(4) compatibility exists between elements, and

(5) the element should not have a preferred direction, this

is desired, not required.

From our displacement function, Eqn (2.12), it can be

seen that seven degrees of freedom (DOF) are present at each

node. These are u, v, w, w, 1 , w, 2 , W,, and W2 . Continuity

of displacement only is required for u, v, W.., and W2.

Therefore, Lagrangian shape functions may be used since they

gaurantee C~continuity. Continuity of displacement and

their derivatives is required for w (i.e. w, w, 1 , w, 2 ) and
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Hermitian shape functions can be constucted that will

provide C' continuity.

Dennis (7) begins the element definition by assuming

the following 12 term quartic for the transverse

displacement w, of a plate with four corner nodes. See

* figure 2.1.

w(x,y) - al + a2 x + a3 y + a 4 x 2 + axy + a8 y 
2 + a7 x

3

+ aex2 y + axy2 + ao
y 3 + a1 x3y + a1 2 Xy (2.55)

x
XX

/ a
-y

FIGURE 2.1. Rectangular Plate Element with Four Nodes

Now, Eqn (2.55) can be rewritten in the form of Eqn (2.51)
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for an element as shown below.

1x3
14P3

1 x q
w(x,y) X [ T 2 X 3 X,4 jq 2  (2.56)

1x12q3

12x ±

(note: (n x m) is the matrix order indicator)

where, for the kt h node,

q T ( w W, W, )k (2.56a)

Xk = Hermitian shape functions shown below

I 1<k<±Iq?32- 2_? 2

X k' k k k <+kr

k k 2 S k(' <k<)2 k _) '+k ) (2.56b)

X bk3j 2 k- +3- 2

where the kt node has the natural coordinates (<klk) and

r=x/a and ri=y/b. See figure 2.2.

For the remaining nodal DOF u, v, W,, and W2 only C °

continuity is required so we will use Lagrangian shape

functions. For these DOF, we approximate Eqn (2.51) in the

form shown below:

S # 1 0 0 0 ... 'A'0 0 0
i = 0 A' 0 0 .-. 0 A' 0 q2  (2.57)

0 0 I 0 -.. 0 0 0' q3
W11 4 2(.7{ I2 0 0 0 1' 20 0 0 ]{q1

where for the kt h node,
qT ={u v Wl W2 >2.7a
qk 12.2 k

A 'k are Lagrangian shape functions

#k I l{ )lW (2.57b)
Ak 2-2
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* 17

FIGURE 2.2. Rectangular plate element of Figure 2.1 in
natural coordinates, <=x/a and qly/b. This
is the only element used.

Combining Eqn (2.56) and Eqn (2.57), the displacement

gradient vector, Eqn (2.40), may be expressed as in Eqn

* (2.58) below:

IN (1 0 0 '* *~0 0

d(,)- Dq = 0 (H 1 0 ... I0 0-1 0 (2.58)
1SX1 [0 0 IN, 0. 0 INJ

1SX28 28x1

where for the kt node,

q =T u v w w,1 w,2 V Y/ (2. 58a)
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and

* TVk 0 1ka Xk2 Xk3

Vk, 0 Xk1, < Xk2,< Xk3, <

k 0 "k "km Zkl,< Xk2, << k3, <<

AO 0 'k, <kl, qq Xk2, r/ Xk3, Y77

0 Vk, Zk, r < "k2,,r "k3,,r1

6x2 Gx3

* The displacement gradient vector in terms of elemental

coordinates (x,y) of Figure 1 is related to the element in

natural coordinates (<,q) (i.e. Eqn (2.58) and Figure 2) by

the Jacobian matrix, J. A general derivation of the

Jacobian follows. Assume a function f(x,y) that represents

the elements of d in Eqn (2.40) where x,y are functions of

the natural coordinates <,q. Taking the partial derivatives

* of f gives

f =fx x, + fy Y,

(2.59)
•= f, x, +rf? y Y,?

then,

0 , . r2Itf< (2.60)•f,y x, y, f, F21 F22 f, (.0

In addition, second derivatives are required of the w DOF,

* for example, from Eqn (2.59)

f, << (f,x xK), + (f,x Y,<),<

=(f x, + f, y, )x, + x x, (2 61)
• xx ', xy < ' x 'r (261

+ (f'YY Y'< + f,'xy x'<)Y' + f'y Y' <

2-22

0



Using similar expressions for f, 07 frTM we get

f, yy - P x,7r yz 2y, r7/x, 77 fr rIE~~EI= [X, Y'YrXn~iYn) [• ~f' xy xY, qx / y ,( , (y , rx, /+x, ry, 17.) f, r

- [ 1  Y ] [ rii r12 f 1 (2.62)

IX1 r, 77 ,r 21  r 2 2 i , r J

Rearranging Eqn (2.62) and combining terms into a 3x5

matrix, A, gives

Sfyy A ] ,< (2.63)

f' xyf,77

* Combining Eqn (2.60) and (2.63) gives the inverse of the

Jacobian matrix and relates the coordinate systems if

Figures I and 2 by the following

d(x,y) - r d(,r) (2.64)

where,

0 r= o r2  0 (2.64a)
0 0 r2

8x 18

and
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0

1 0 0 0 0 0

0 r, r 1 2  0 0 0

0 r2 1  r2 2  0 0 0

rl 0 0 0 1 0 0 (2.64b)

0 0 0 0 F. r. 2

*0 0 0 O 0 I02 1  r2 2OxO

1 0 0 0 0 0

* 0 r1l r1 2  0 0 0

0 r2 1  r2 2  0 0 0

r2 - 0 All A1 2  A1 3  A1 4  A1 5  (2.64c)

0 A2 1  A2 2  A2 3  A2 4  A2 5

0 A3 1 A3 2  A3 3  A3 4  A3 5
Ox0

* For the rectangular element assumed here, many terms are

zero. What we are left with is r1 1-1/a, r2 2=1/b, A1 3 =1/a',

2A24-1/b 2 , and A3 5 =iiab. Where a and b are the dimensions of

the plate in the x and y direction, respectively. The

remaining r's and A's are zero.

The 28 DOF element shown in figure 2.3 is now

completely defined and is summarized below.

Sd r D q (2.65)

=Dq

where the order of the appropriate matrix can be stated as

* d = 18 x I (Eqn C2.403)

r = 18 x 18 (Eqn (2.64a))

D = 18 x 28 CEqn (2.58)

q = 28 x I (Eqn (2.58a)

V is the matrix that is used in Eqn (2.54) to calculate

the components of the tangential stiffness matrix.
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0 x

•w 1W /

0y
0a

FIGURE 2.3. 28 DOF Rectangular Plate Element.

* Solution Algorithms

Now that all quantities have been defined, the solution

algorithm is presented. The integrals inherent in Eqn

(2.37) are calculated for an individual element. Each

element's contribution is added to the global stiffness

array according to the element's connectivity. Therefore,

Eqn (2.37) is represented below for the entire plate.

k1~~ ~~ [&1D' + N2 ] ~dlk e 
k

(2.66)

+k N + N2  D !d(eq + R

where,

S~Q = 2-D domain of the element

n = number of elements in mesh
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Aq,q - global column arrays of displacement assembled

from element Aq and q.

R - applied load array, of same dimension as global q.

R can be found using the same shape functions as used

for element displacements and can be calculated an an

elemental (and then assembled) or global basis. A dicussion

of both methods can be found in Cook (6). Solutions to Eqn

(2.66) are found iteratively where the RHS becomes small,

* i.e. equilibrium is satisfied. The integrations are carried

out using Gaussian quadriture in natural coordinates < and

q. As an example, look at the first term in the summation

of Eqn (2.66):

fa e K + N- + 2  9 dOe

- f f T[ + + 9?] 131 d~d77 (2.67)•n e

* -1. -i

2 =1 L2 I

where,

IJI = determinant of the Jacobian matrix,

g,)K, N 2' N, 1I are evaluated at Gauss integration

points ( s, 77),

Wi W = weighting factors, and

m = order of the numerical integration.

In a linear analysis, displacements and rotations are

assumed to be small, and therefore and 2 are eliminated.
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Also, since the relationships are linear, Eqn (2.34) is

solved directly for q,i.e. iterative solutions are not

necessary. So, Eqn (2.66) may be rewritten

2 f1 T [ +& + ] ) IJI d-d1jqmR (2.68)

The solution of Eqn (2.68) is accomplished by Gaussain

• elimination. The resulting displacements can be used to

find the strains and then stresses at the Gauss points via

previously derived relationships.

For a nonlinear analysis, the linearized

incremental/iterative equations are solved by a

Newton-Raphson technigue. For this research 5x5 integration

was used rather than the 7x7 called for in the exact

• solution for the nonlinear cases and &x4 integrations for

the linear cases. Dennis (7) determined that this gave

adequate accuracy and accelerated computer run times

considerably. In the first iteration of the first

increment, the displacement gradient vector is calculated by

the linear technique described in the preceeding paragraph.

N. and N2 are then calculated and iteration continues until

* convergence is achieved. A global displacement convergence

criterion is used (19) as shown below:

(q) 2  - Ji (r-12

X 100 5 TOL (2.69)

* where,

q ' qi are the elements of q for the rth ,
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(r-I) , and first iterations of a given increment, and

TOL is a user defined convergence tolerance percentage

and 1% was used in this research.
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III. NUMERICAL DEVELOPMENT

In this section the results of this research effort are

presented. The results are presented in four major areas.

First, the results of the code verification, second, the

specific parameters of the cases studied, third, the

generation of the finite element mesh, and finally, some

considerations reguarding symmetry of the mesh.

Code Verification

The finite element code used in this research was

developed by Dennis (7) for a fully nonlinear cylindrical

shell. It can also be used for the plate under

consideration in this thesis. The code was verified as to

its accuracy by Dennis (7). The verification presented here

is not only to retest the accuracy of the code, but also to

assure that the input decks of the program were formulated

properly. Two verification cases were studied: a

geometrically linear analysis and a geometrically nonlinear

analysis.

For the geometrically linear case the orthotropic

material studied was aragonite crystals with the following

properties given in million psi:

E,- 20.83, E2 - 10.94, G1 2 = 6.10,

(3.1)
G13 3.71, G = 6.19, v12 = 0.44, v2 1 = 0.23

The plate was rectangular in dimension a x b with a

uniformly distributed transverse load. The transverse

deflection w in table 3.1 is taken at the center of the

plate, h is the thickness of the plate, and q. is the load
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per unit area of the plate. The values for comparison come

from the exact solutions of Srinivas and Rao (42) as

presented by Reddy (32).

Table 3.1. Verification of geometrically linear
analysis.

axb a/h b~ w/q
1 Exacts Present

7.142 387.23 387.90

0.5 10.0 1408.5 1410.0

20.0 21542 21552

7.142 191.07 191.71

1.0 10.0 688.75 689.83

20.0 10443 10447

7.142 39.790 40.240

0 2.0 10.0 139.08 139.90

20.0 2048.7 2051.8

QC1 1 2 23.2 x 106 psi

* bSrinivas and Rao

As can be seen, there is excellent agreement between the

* exact and the present finite element solution.

For the geometrically nonlinear case a test done by

Dennis (7) was repeated. Dennis, in turn, was verifying the

results of Putcha and Reddy (28). In this case the plate

was 16 inches square, 1.6 inches thick, and subject to a

uniform pressure q." The ply layup was [0/±45/90], with the

following material properties (where the modulii are

expressed in million psi):

EI-60, E -i.5, G1 2-G 1 3 - .9, G2 3-. 75, v 1 2 -.25 (3.2)
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Both simple and clamped supports with the boundary

conditions as shown in Eqn (3.3), were investigated:

Simple Clamped

@x ±a/2: vmw= 2 O umw W, 1  W(.3)

@y-±a/2: u=w=Wi=O vmw-w,2=W2 O

The pressure and center displacement were nondimensionalized

as in Eqn (3.4):

• qo a 4
0- qa wCO 0)

E2 h4

The plate was modeled using quarter plate symmetry with a

*• 4x4 mesh for the simple case and 8x8 mesh for the clamped

case. Results are shown in Table 3.3.

Table3.2. Verification of geometrically nonlinear analysis

Dennis Present

W (Simple) F (Clamped) W (Simple) W (Clamped)

50 .2759 .1395 .2759 .1395

100 .4873 .2595 .4873 .2595

150 .6473 .3573 .6473 .3573

200 .7753 .4377 .7753 .4377

* 250 .8825 .5055 .8827 .5055

As can be seen from table 3.2 the results match extremely

* well. Also, the comparison of these results with Pucha and

Reddy can be seen in figure 3.1. Again, agreement is

excellent.

* Parameters Studied

In this research two types of material were studied,
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FIGURE 3.1. W vs q for [0/±45/90]9 Laminated Plate.
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along with two types of analysis, six thickness ratios,

three aspect ratios, two boundary conditions, and four ply

layups. All possible combinations of these six parameters

were analyzed for a total of 576 test cases.

Materials. The two types of materials were chosen to

* have a large difference in their ratio of E. to G13 . This

ratio is of interest because it is one of the driving

parameters in determining how much effect the transverse

shear stresses have on the response of the structure. The

specifics of each material type are shown in Eqn (3.5):

Material A:

E l -40 P G 1 = 0 .5 , G 2 0 2 , v VI 0 25 (3 5a )* E 123 G2 3
2 2 2

Material B:

E 15 G 1 3  G 23 0
L L 01.2320., 1=0.28 (3.5b)

2 2 2

* For both materials G1 2 =G1 3 and the ply thickness was set at

0.005 inches. For each material E 1=20xi0 psi.

Analysis. The two types of analysis conducted were

geometrically linear and geometrically nonlinear. Both

types of analysis were discussed in the previous chapter.

In early verification tests, it was seen that loads greater

than 500 psi would cause large enough rotations so as to

* violate the von Karman limitations of moderate rotation, the

criterion being that the rotations could not be greater than
17 ° . Therefore, for both types of analysis a maximum load

of 500 psi was applied to the plate. In the linear cases

the load was applied in one increment. In the nonlinear

cases the load was applied in five equal increments of 100
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psi. The nonlinear computer run times were roughly 20 times

greater than the linear computer run times.

Thickness Ratio. Thickness ratio, S, is defined as the

length of the plate in the x-direction, a, divided by the

thickness. Six thickness ratios were studied. They were

*0 10, 20, 30, 40, 50, and 60.

Aspect ratio. Aspect ratio, AR, is defined as the

length of the plate in the x-direction, a, divided by the

length of the plate in the y-direction, b. Three aspect

ratios were investigated: 0.5, 1, and 2.

Boundary conditions. The two boundary conditions

considered were simple and clamped. The boundary conditions

* were chosen so as not to restrict the inplane deflections at

the boundary. This was done to eliminate as much of the

inplane membrane stresses as possible so the effects of the

transverse shear stresses would be more pronounced. The

boundary conditions are shown in figure 3.2 where subscript

t denotes tangential direction and subcript n denotes normal

direction. In both cases displacements in and out of the

• plane of the page are allowed.

Ply layups. The four ply layups chosen were:

(0 to 90a]up [ 0 160 6-60]s, [0 1245 a-45 J and

[0 12/454/-454/90 4], where the numerical subcript denotes

the number of plies in a given orientation and the subscript

s denotes that the ply layup is symmetric about the

midsurface. These layups represent several of the more

• common types of ply layups used today. The ply layups were

all 48 plies thick, which is of the same order as the number

of plies used in aircraft structures such as wing, tail, and

stabilizer skins. Additionally, it was desired to have at

• least 50% of the plies in the 0* or x-direction.
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Simple

W t = 0

* Clamped

0
W - W t  = W W 0

Figure 3.2. Boundary conditions.

Finite Element Mesh Generation

Because the number of plies was held constant and the

ply thickness was the same for both materials, the thickness

• of the plate was constant for all cases studied. All plates

were 0.24 inches thick. Consequently, the thickness
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determined the inplane dimensions of the plate through the

thickness ratio and aspect ratio of interest. The dimension

in the x-direction, a, was set by the thickness ratio

desired. For example, if a thickness ratio of 30 was

needed, then the a dimension would be 7.2 inches. The

* dimension in the y-direction, b, was then set by the aspect

ratio. Continuing the above example, if a was 7.2 inches

and an aspect ratio of 2 was desired, then b would be 3.6

inches. The values of a and b for all thickness and aspect

ratios is shown in table 3.3.

Table 3.3. Dimensions of plate for all

• thickness and aspect ratios.

S a b(AR=.5) b(AR=I) b(AR-2)

10 2.4 4.8 2.4 1.2

20 4.8 9.6 4.8 2.4

30 7.2 14.4 7.2 6.6

40 9.6 19.2 9.6 4.8

50 12.0 24.0 12.0 6.0

60 14.4 28.8 14.4 7.2

To illustrate the dimensions of the plate for any given

value of S, the relative sizes of the plate for the

different aspect ratios are shown in figure 3.3.
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Sx X, X

a a a

b 0y y y
0 AR-1/2 AR-1 AR-2

FIGURE 3.3. Relative plate planforms for any value of S.

For all cases studied, an 8x8 uniform mesh was used. Dennis

(7) showed that this gives good accuracy with efficient

computer run times. Also, quarter plate symmetry was used

* in all cases. Quarter plate symmetry allows for a finer

mesh over a smaller portion of the plate and thus increases

accuracy while decreasing computer run time. Dennis (7)

also ran a convergence test which verified the accuracy of

the 8x8 quarter plate mesh.

Quarter Plate Symmetry Considerations

Early in the research effort the question arose as to

whether quarter plate symmetry was a valid assumption. In

this section we will attempt to address that question.

Several authors (18), (34) address the issue and conclude

* that for a symmetrically stacked ply layup, as in this

research, quarter plate symmetry can be used because the

coupling stiffness terms, B,,, are all zero. While this is

true, the bending stiffness terms, D.J, are not all zero.

And while the D terms are not included computationally due

to the numerical approach in the present formulation, they

serve as a good baramoter of the degree to which coupling

* between bending and twisting will occur. The terms that

generate the problems with reguards to symmetry
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considerations are D., and D 2 . In order to study this, the

worst case, i.e. largest, ratio of Di. and D26 to Dil was

identified and a full and quarter plate model for both a

linear and nonlinear analysis were tested. Values of both

A. and D. are shown in tables 3.4 and 3.5 for both
U j

* . materials and all ply layups.

Table 3.4. Extensional stiffessesG

Mat. Ply All A12 A22 Als A 1 A26

A [0/90] b  3.2451 .0300 1.6826 .0600 0.0 0.0

* A [0,±60]c 2.6159 .4639 1.4441 .4938 0.0 0.0

A [0/±45]d 3.0572 .6085 .7136 .6385 0.0 0.0S

A [0/±45/90]0 2.8594 .4157 1.2970 .4456 0.0 0.0S

B [0/90] 3.3240 .0901 1.8229 .1920 0.0 0.0

B [0/±60J 2.7428 .4837 1.6169 .5856 0.0 0.0

B [0/±45] 3.1745 .6149 .9227 .7168 0.0 0.0S

B [0/±45/90] 2.9741 .4400 1.4730 .5419 0.0 0.0S

C alI values are 108
bactual ply layup [01/90s.

Cactual ply layup 012/60/-606]S

dactual ply layup 0 12 /456-456s

eactual ply layup C012/454/-454/904]a
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Table 3.5. Bending stiffnesseso

Mat. Ply D 1 D 1 2  D 2 2  D 6 D 1 6 D 2

A [0/90] 22243 144 1410 288 0 0U

A [0/±60] b  20446 665 2166 809 231 682

* A [0/±45]r 20976 838 1289 982 527 527

A [0/±45/90] d 20949 813 1367 956 312 312

B [0/90] 22361 432 2345 922 0 0

B [0/±60] 20662 905 3098 1394 234 643

B [0r±45] 21180 1062 2265 1551 507 507U

B [0/±45/90] 21154 1039 2339 1528 300 300
£

Iactual ply layup [0 1690 ]
bactual ply layup [0 12/60 5/-60 6]

* Cactual ply layup [012/45 15 5 -6]

dactual ply layup (0 12/454/-454/90]

• As can be seen from table 3.5, the worst case was chosen as

material A with a [012/60 6/-60 6 ply layup. In the test

case, the plate was simply supported, with an S-30, and an

aspect ratio of one. The full plate was modeled with an 8x8

mesh and the 1/4 plate was modeled with a 4x4 mesh. Both

linear and nonlinear analysis were conducted and

nondimensionalized center transverse deflections were

* compared. The deflections were nondimensionalized according

to Eqn (3.6) where w represents the deflection at the

center of the plate. Results are shown in Table 3.6.

• ~w h3 E2
2 100 (3.6)

qa 4
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Table 3.6. Center deflection results of quarter plate
symmetry verification tests.

W (linear) W (nonlinear)

Full Plate .4573 .2275

1/4 Plate .4856 .2334

% Difference 5.82 2.55

As can be seen from Table 3.6, there is good agreement

between the the full and quarter plate. The author feels

that quarter plate symmetry is an accurate way to model the

• plate based on the following factors: all comparisions of

results will be made within this thesis and not to other

published sources (primarily because there aren't any other

published cases for the parameters studied), and, the

primary emphasis in this thesis is on trends in the results

and not absolute numbers.

3-12



IV. RESULTS/DISCUSSION

In this chapter the main results of the thesis are

presented. The effects of material properties, aspect

ratio, and ply layup are discussed in separate subsections.

The effects of the type of analysis used, plate thickness,

and boundary conditions lend themselves to being discussed

• as they come into play with respect to the parameter being

analyzed. Kost of the results in this thesis are presented

in the form of graphs of the nondimensionalized center

deflection, W, versus thickness ratio, S. The center

deflection F is nondimensionalized according to Eqn (4.1):

C 1 x 10 (4.1)

Sq a4

There are three types of forces that characterize the

response of the plate; membrane or inplane, bending, and

shear. In a linear analysis the response is characterized

by only bending and shear. This is because the membrane

forces are a function of the membrane strains which are

* neglected in a linear analysis due to the transverse

loading. In the nonlinear analysis all three types of

forces are present. However, a thick plate is charaterized

primarily by bending and shear because there is very little

* displacement in the inplane directions, making the membrane

forces small compared to bending and shear. This makes it

similar to the linear analysis. A thin plate is

characterized primarily by membrane and bending forces.
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Effects of Material Properties.

* The graphs discussed here are representative of all the

cases studied. For a complete set of graphs for W versus S

considering all ply layups and aspect ratios that show the

difference between the two materials see Appendix A. Only

one case is discussed here for each boundary condition

because the volume of data would be overwhelming and not

convey much more information as one representative graph.

• Simply supported plate. Figure 4.1 is a plot of W

versus S for a simply supported plate with a

[01/ 4 5 4/-454/90 4] ply layup and an aspect ratio of 1/2.

Linear and nonlinear results for both materials A and B are

presented. The linear solution, i.e. solid line,

asymptotically approaches the classical laminated plate

theory (CLPT) solution, which, as will be shown later, is

• constant for all values of S, as the plate Gets thinner.

This is due to the fact that, as the plate Gets thinner, the

bending moments begin to dominate the response of the

structure and the solution degenerates to a CLPT problem.

Material A approaches the CLPT solution at approximately

S=40, while material B approaches the CLPT solution at

approximately S=25. As can be observed, as the plate gets

* thicker, the nondimensionalized center deflection increases

for both materials from the CLPT solution because the

transverse shear effects are coming more and more into play.

Therefore, the main difference between the linear solution

and the CLPT solution is that the effects of the transverse

shear strains have been included. Note that for any given

value of S, material A has a greater deflection than

material B. This is because B has a higher transverse shear

strength, i.e. lower E1 /G 13 ratio, than A. Consequently,
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FIGURE 4.1. 7 vs s for a simply supported
(0 12/ 5/- plate with an aspect ratio of 1/2.
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when the transverse shear has a major impact on the response

of the plate, the ratio difference between the two materials

becomes more important. Note also that as the plate gets

thinner, the two linear solutions approach the same value.

Again, this is because the bending forces become dominant

* and the major difference between the two materials, the

E1 /G 1 3 ratio, becomes less important as the magnitude of the

transverse shear forces decrease relative to the membrane

forces. However, there is always some difference between

the solutions because there are differences in the smaller

values of D., as can be seen in table 3.4.Lj,

The nonlinear solutions, i.e. dashed lines, also

• asymptotically approach a constant value, but, this constant

value is not reached until the plate is quite thin, i.e. S

is greater than 60. This occurs when the higher order

inplane strains are transformed into axial forces. The

reason the deflections in the nonlinear solution are so much

less than the linear solutions is because the higher order

terms present in the inplane deflections translate into

* increased membrane stiffness which plays a greater role as

the plate gets thinner and the inplane stresses begin to

dominate the structural response. Note however, that for

values of S between 10 and 20, there is virtually no

S difference between the linear and nonlinear solution. This

is because in this range, the transverse shear strains,

which are linear for both geometrically linear and nonlinear

solutions (see Eqn (2.10)), dominate the response of the

structure. From the plot of the curve in this range, the

nonlinear solution would appear to have a Greater deflection

than the linear solution. This is not actually the case

* however, and this is a result of the functions that had to

be used to plot the various curves. If the actual data
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points are compared, it can be seen that for small values of

S, the deflections of the nonlinear case are equal to that0
of the linear case and for larger values of S, the nonlinear

is less than the linear. All simply supported plates

investigated exhibited similar behavior.

* Clamped Plate. Figure 4.2 is a plot of W versus S for

a clamped plate with a [012/606/-606] ply layup and an

aspect ratio of one. Many of the same things can be said

about fig 4.2 that were said about fig 4.1, i.e.

assymptotically approaching the CLPT solution, effect of

transverse shear, etc. Here it can be seen that in the

linear solutions, material A is close to the CLPT solution

• for values of S greater than 50 and material B for values of

S greater than 40. In the nonlinear case, the clamped plate

is similar to the simply supported plate, in that the

solution does not approach a constant value until the plate

is quite thin, i.e. for values of S greater than 60.

However, the most striking thing about this graph is the

relative closeness of the linear and nonlinear solution as

* compared to the simply supported case of fig 4.1. This

closeness is due to the significant stiffening which the

clamped boundary condition imparts to the plate.

Consequently, the higher order terms do not play as large a

* role in the deflections and ensuiiig strains and stresses.
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FIGURE 4.2. vs s for a clamped [0 12/605/-605]
• plate with an aspect ratio of one.
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Figure 4.3 is a plot of W versus Z for a simply

supported plate with a [0 / 4/-454/90 4] ply layup and and

aspect ratio of one. The nondimensionalized incremental

load, i, is calculated by Eqn (4.2) where q. represents the

load in any given increment:

xo106 (4.2)

For a complete set of w vs q graphs, see Appendix B. The
results presented come from the nonlinear solution because

it is incremental in nature. Solving Eqn (4.1) for w in

terms of W, one obtains

0 a4
w - IOh'E ' q (4.3)

* As can be seen from Eqn (4.3), the value of w represents the

slope of the actual load versus displacement curve because

El and h are constant and a is constant for a given value of

S. Based on fig 4.4, which shows the actual

0 load-displacement curve for the same plate, it can be seen

that as the slope of the curve gets more nonlinear and

flatter, the plate gets thinner. This occurs because the

* higher order terms in the assumed displacement function are

coming more into play as the membrane forces begin to

dominate the solution. Again, considering figure 4.3 for a

thick plate, i.e. S=10, W is nearly constant. This implies

• that w, (figure 4.4) the actual displacement, increases

linearly with the incremental load, q." This is because for

thick plates the linear and nonlinear solutions are

identical which can be seen in figures 4.1 and 4.2. Note

that as the plate becomes thinner, the difference in the

curves for different material properties is reduced. This
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is because as the plate gets thinner the membrane forces

have more effect than the transverse shear forces on the

deflections of the plate and therefore, the major difference

between the materials, the E 1/G 3 ratio, has less effect.

Effect of Aspect Ratio.

Next, we look at the effect of aspect ratio on the

response of the plate. To serve as a relative basis of

comparison between the various aspect ratios, a classical

plate theory solution was conducted for a simply supported

isotropic plate. Deflections were calculated using Navier's

solution by double trigonometric series, shown in Eqn (4.4),

as presented in Szilard (44):

Pm
w(x,y2 -- sin sin

*odd odd l~2 =1
D m nm2 -b- (4.4)

where m,n = 1,3,5,...,I01 and

Eh
3

D - (4.4a)12(1-- 2)

and for a uniform load,

16q o0P (4.4b)
mn Tr 2mn

The material properties chosen are shown in Eqn (4.5):

E = 20 x 106 psi, h = .24 in,

(4.5)

v = .25, qo = 500 psi

the nondimensionalized deflection was calculated by Eqn
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(4.1) and is shown in table 4.1.

Table 4.1. Nondimensionalized center deflectiona
(classical solution) of a simply supported isotropic
plate for various aspect and thickness ratios

S ;CAR=.5) ;CAR=l) W(AR-2)

* 10 .7851 .2968 .0491

20 .7851 .2968 .0491

30 .7851 .2968 .0491
40 .7851 .2968 .0491

50 .7851 .2968 .0491

• 60 .7851 .2968 .0491

dall 7 values are times j0
3

As can be seen in table 4.1, as the aspect ratio increases,

w decreases but, as mentioned before, it is the same for all

thickness ratios. The value of W for an aspect ratio of 1/2

is roughly three times of that for an aspect ratio of 1.0.

* In addition, W for an aspect ratio of two is roughly 1/5 of

that for an aspect ratio of one. Thus, one can see the

significant differences aspect ratio makes for an isotropic

plate of the dimensions given in table 3.3.

The aspect ratio affect reported on next is observed

for both materials and all ply layups. A complete set of

plots for both materials and all aspect ratios can be seen

* in Appendix C. A representative graph for both simply

supported and clamped boundary conditions are discussed

next.

Simple Supports. Figure 4.5 shows W versus S for a

simply supported plate with a [0,,/90 8 ] ply layup made of

material B. The curves for both the linear and nonlinear

solutions for all three aspect ratios are shown. Like

figure 4.1, the linear and nonlinear solutions are very

close for S values less than 15 to 20. However, the most

striking thing about this plot is the proximity of the
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solutions for aspect ratios of one half and one using linear

theory when compared to the relative magnitudes of 7 for an

isotropic plate as shown in table 4.1. It can be seen for

S=40, the value of W for an aspect ratio of 1/2 is 109% of W

for an aspect ratio of one, and 7 for an aspect ratio of two

* is 38% of V for an aspect ratio of one. This similarity of

results between the AR=i/2 and AR-i cases occurs because,

for these two aspect ratios, there are a greater number of

fibers in the direction of the short dimension of the plate.

Referring to the discussion of ply layups, at least half of

the fibers in all ply layups is in the x-direction, and

referring to table 3.3, the x-direction is the shorter

* dimension for an aspect one half and is the longer dimension

for an aspect ratio of two. The short dimension of the

plate has a greater influence on the response of the plate

and so, when the short dimension of an orthotropic plate

with an aspect ratio of one half is equal to the dimensions

of a square, i.e. AR=I, orthotropic plate of the same ply

layup, one would expect their response to be very similar.

• The nonlinear solutions converge to values of W that result

in ratios that are somewhat closer to the isotropic case

than the linear solution. Here, W for AR-1/2 is 164% of W

for AR=I, and W for AR=2 is 62% of W for AR=I. Again, this

occurs because the higher order terms in the inplane

displacement function significantly stiffen the plate and

transverse shear deflection effect is reduced. Like the

• isotropic case, as aspect ratio increases, W decreases. All

simply supported plates exhibit similar behavior.

Clamped Supports. Figure 4.6 shows V versus S for a

clamped plate with a [12/454/-454/9O4] ply layup made of

* material B. The curves for both the linear and nonlinear

solutions for all three aspect ratios is shown. Again
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FIGURE 4.5. 7 vs s for a simply supported
* [01 /908]2 plate made of material B.
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plate of material B.
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looking at S-40 for the linear results, the value of W for

* Ai~R1/2 is 103% of W for AR-I, and W for AR-2 is 37% of w for

AR=I. This compares favorably to the simply supported case.

The behavior here, in general, is very similar to the simply

supported plate shown in figure 4.5, but the main difference

here is that the linear and nonlinear solutions are

comparible to a much greater value of S. For an aspect

ratio of one half the solutions are comparible up to S=40,

for AR=I up to S=30, and for AR=2 up to S=40. As mentioned

in the discussion of figure 4.2, this occurs because the

boundary conditions considerably stiffen the plate and the

higher order terms present in the nonlinear solution do not

* come into play to the same extent they do in the simply

supported case. All the clamped plates studied exhibited

similar behavior.

* Effects of Ply Layup.

Next, we look at the effect of ply layup on the

response of the plate. Figures 4.7 and 4.8 make the

comparison of ply layups by plotting W versus S for all ply

layups for both linear and nonlinear solutions. The plate

shown is of material A with an aspect ratio of one and the

ply layups are numbered as shown in table 4.2.

Table 4.2 Layup Numbering System
for Figures 4.7 and 4.8.

Ply Layup

* 1 [0 t/90 a

2 [012/60 6/-60]I

3 [0 12/455--456]s

4 [0 2/45 4/-454 /90 41
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FIGURE 4.7. 7 vs s for a clamped plate
of material A with an aspect ratio of 1.
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Figure 4.7 is for a clamped plate and figure 4.8 is for

a simply supprted plate. As can be seen in both plots,

there is not a large difference between the layups. This is

due to the fact that for each layup at least 50% of the

plies were in the 0* direction, i.e. parrellel to the

x-axis, and these plies dominate the response of the

structure. However, there are some differences between the

layups due to the large differences between some of the

smaller A. and D. terms as a result of the different plyj Lj

orientations. But, as can be seen from tables 3.4 and 3.5,

these terms are always at least an order of magnitude less

than A11 or D11, which dominate the plate's response, so the

difference in deflection is small. The differences between

ply layups is more pronounced for the nonlinear solution

than the linear solution. Also, the differences are more

pronounced for a thick plate than for a thin plate.

4-18



V. CONCLUSIONS

In this thesis the effects of material properties,

* geometric nonlinearities, thickness, aspect ratio, boundary

conditions, and ply layup on the static deflections of a

uniformly loaded rectangular composite plate were

investigated. Parabolic transverse shear strain was

included in the analysis. The plate was analyzed with an

existing finite element code incorporating a 4-noded 28 DOF

rectangular element. Quarter plate symmetry was used to

* model the plate.

1. The linear solution asymptotically approaches the

classical laminated plate theory (CLPT) solution as the

plate gets thinner. This is because as the plate gets

thinner the inplane forces begin to dominate the response of

the structure and the solution degenerates to a CLPT

problem. As the plate gets thicker, the deflection

increases from the CLPT solution because the transverse

shear effects are coming more and more into play.

Therefore, the main difference between the linear solution

and the CLPT solution is that the effects of the transverse

shear strains have been included.

2. When the transverse shear has a major impact on the

response of the plate, i.e. the plate is thick, the

difference between the two materials in their transverse

material properties becomes more important. As the plate

gets thinner, the linear solutions for the different

materials approach the same value. Again, this is due to

* the fact that the inplane forces become dominant and the

major difference between the two materials, the E1 /G 1 3
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ratio, becomes less important as the magnituce of the

transverse shear forces decrease relative to the inplane

forces. However, there is always some difference between

the solutions created by the differences in the other

material parameters.

* 3. The nonlinear solutions also asymptotically approach

a constant value but it is much less than the linear

solution and this constant value is not reached until the

plate is much thinner. The reason the deflections are so

much less in the nonlinear solution than the linear

solutions is because the higher order terms present in the

inplane deflections translate into increased membrane

* stiffness which plays a greater role as the plate gets

thinner when the inplane stresses begin to dominate the

structural response. However, for thick plates there is

virtually no difference between the linear and nonlinear

solution. All ply layups and aspect ratios investigated

exhibited similar behavior.

4. For a clamped plate with a linear solution, the

deflection does not approach a constant value until the

plate is quite thin. However, the most striking feature

about the clamped plate is the linear and ncnlinear solution

are quite close compared to the simply supported case. This

* closeness is due to the significant stiffening which the

clamped boundary condition imparts to the plate.

Consequently, the higher order terms do not play as large a

role in the deflections and ensuing strains and stresses.

This closeness of the linear and nonlinear solutions was

exhibited for all ply layups and aspect ratios investigated.

5. The slope of the load-displacement curve gets more

• nonlinear and flatter, as the plate gets thinner. This

occurs because the higher order terms in the assumed
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displacement function are coming more into play as the

membrane forces begin to dominate the solution. However,

for a thick plate the displacement increases linearly with

load. This is because, for thick plates, the linear znd

nonlinear solutions are nearly identical.

* 6. For aspect ratios of one half and one, the

deflections are quite similar. This is due to the fact that

for these two aspect ratios, there are a greater number of

fibers in the direction of the short dimension of the plate

for the ply layups considered here. The short dimension of

the plate has a greater influence on the response of the

plate and so, when the short dimension of an orthotropic

• plate with an aspect ratio of one half is equal to the

dimensions of a square othotropic plate of the same ply

layup, their responses are very similar. The nonlinear

solutions all converge to roughly the same value for all

aspect ratios. This is because the higher order terms in

the inplane displacement function significantly stiffen the

plate and reduce transverse deflection. For a clamped

* plate, the linear and nonlinear solutions are comparible

until the plate is much thinner than for a simply supported

plate. This occurs because the boundary conditions

considerably stiffen the plate and the higher order terms

present in the nonlinear solution do not come into play to

the same extent they do in the simply supported case. All

clamped plates exhibit similar behavior.

7. In this research, ply layup does not have a large

effect on the deflection of the plate since at least 50% of

the plies are in the 0' direction, i.e. parrellel to the

x-axis, and these plies dominate the response of the plate.

* However, there are small differences in deflection between

the layups. These differences are more pronounced for the
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nonlinear solution than the linear solution and are more

pronounced for a thick plate than for a thin plate. Also,

it was observed that the maximum transverse shear stress

usually occurred between the plies with the maximum angle

difference between them.
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Appendix A

Material Properties Comparisons

This appendix presents a complete set of curves of

nondimesionalized displacement, W, versus thickness ratio,

S, for all ply layups and aspect ratios. Linear and

nonlinear solutions for both materials are presented on each

graph. The displacement is nondimensionalized according to

Eqn (A.i):

w h3 E x I0 (A.I)

qa
4

where

* w = center displacement

h = plate thickness

E, = Young's modulus in fiber direction

qo = total load on plate

a = characteristic inplane dimension
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0 Appendix B

Nondimensionalized Load-Displacement Curves

This appendix presents a complete set of curves of

nondimesionalized displacement, W, versus nondimensionalized

load, q, for all ply layups and aspect ratios. Nonlinear

• solutions for both materials are presented on each graph for

thickness ratios of 10, 30, and 60. The displacement and

load are nondimensionalized according to Eqn (B.1):

w h3 E - q
qo a 4  x 10 q x 106 (B.1)

where

* w = center displacement

h = plate thickness

El = Young's modulus in fiber direction

q. = total load on plate

a = characteristic inplane dimension
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0
Appendix C

Aspect Ratio Comparisons

This appendix presents a complete set of curves of

nondimesionalized displacement, W, versus thickness ratio,

S, for all ply layups. Linear and nonlinear solutions for

each aspect ratio are presented on each graph. The

displacement is nondimensionalized according to Eqn (C.1):

wCh 3EI x 10

where

w= = center displacement

* h = plate thickness

E, = Young's modulus in fiber direction

q. = total load on plate

a = characteristic inplane dimension
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Figure C.1. vs s for a simply supported
016190 8 I plate made of material A

C-2

• I l I I I I I



4.0-
w ,:,o,,,,oAR=I, LINEAR

o ,-, AR=I, NONLINEAR
3.5 0000 AR=1/2, LINEAR

o oo oo AR=1/2, NONLINEAR
30,, "A "AR=2, LINEAR5.0\
e "AR=2, NONLINEAR

2.5-

* 2).0

1.5-

1.0 ')

• ~0.0 - -

0 . " i I I i I , i I i I i I I I i I I I I i jI

0 10 20 30 40 50 60 70

0 S

Figure C.2. W vs s for a simply supported
(012/60 a/-606] plate made of material A

C-3

0



. w o t - o o AR 1, LINEAR
S._AR=1, NONLINEAR

5.0 000 o9o AR=1/2, LINEAR
AR= /2, NONLINEAR

_ , AR=2, LINEAR
2.5- AR=2, NONLINEAR

2.0
\0

1.05

00.5 - - \

iA

0.0 - I Ij I I I) I II 1I II 1I iI I I lii I I iI

0 10 20 30 40 50 60 70
0 S

Figure C.3. W vs s for a simply supported
[012 45 X-4561S plate made of material A

C-4

. ... . ..0i . mum nnuun lu



40-

w o orn AR=1, LINEAR
c3 3 o ,- - AR=1, NONLINEAR

3.5 00000 AR=1!2, LINEAR
- o o oAR=1 2, NONLINEAR

3,- AR=2, LINEAR
X- AR=2, NONLINEAR

2.5-

1 .5 \0

2.0-1.5- _K
5 1.- \ \,

0.0

- -X-o

0 - -11 1.111 11 11 "\I I ,I i

0 10 20 30 40 50 60 70
* S

SS

Figure C.4. w vs s for a simply supported
[012 45 4' - /9-4 ] plate made of material A

C-5

,iSm a m a N i n



3.5-
W ~OEIDAR=1, LINEAR

C 01 t 3AR-1 , NONLINEAR
3.0 00000 AR=1/2, LINEAR

0 ,ioAR=1 /2, NONLINEAR
A~e~\AR=2 LINEAR

2.5 AR=2, NONLINEAR

2.0-

1.5-

* 1.0

0.5-

0.0 1 ~ ~ t Ihlrij II7fI "...T

o 10 20 30 40 50 60 70
0 S

Figure C.5. W vs s for a clamped
(0/0 aO] 9p late made of matrerial A

C-6



3.5-
w o13 a AR=1, LINEAR

-nD " 3i [ AR=1, NONLINEAR
.0 0o000 AR=1/2, LINEAR

0 00oo o oAR=1/2, NONLINEAR
a A AR=2, LINEAR

-" ,"AR=2, NONLINEAR
* 2.5-

2.0-

1.5 -

0 1 .0-

0.5-

0.

00- II "\111111111Ill

0 10 20 30 40 50 60 70
0 S

Figure C.6. 7 vs s for a clamped
[012/60 s/-60 1 plate made of material A

C-?

. . . .i I l I I



3.0-
u u u o o AR=1, LINEAR

AR=1, NONLINEAR
a o o o o AR=1/2, LINEAR

2.5 o AR=1 /2, NONLINEAR
*," "AR=2, LINEAR
AR=2, NONLINEAR

2.0-

1.5

1.0-

* 0.5-

0.0~

0.0 illI i II iil I iIIii 1 I I i i I I 1111111I Ii

• 0 10 20 30 40 50 60 70
s

Figure C.7. vs s for a clamped
[012/456 /-45.. plate made of material A

C-8

...0



3.5 oon AR=1, LINEAR
AR=1 , NONLINEAR

03.0 0000 AR:=1/2, LINEAR
000 0AR=1 /2, NONLINEAR

~ AR =2, L'N EAR
2.5 ~AR=2, NONLINEAR

2.

2.0-

* 1.0-

0.5-

0.0 -gl

0 10 20 30 40 50 60 70

Figure C.8. 7 vs s for a clamped
[012 /45 /-45 /904], plate made of material A

C-9



2.50
2.50 w "oo AR=1, LINEAR

S2.25 - , _, AR=1, NONLINEAR
oo ooo AR=1/2, LINEAR

2.00 \ . - _h AR--/2, NONLINEAR
AR=2,NLINEAR

* 1.75 AR=2, NONLINEAR

1.50 - z \ \o

• 1.25-

1.00 \b
- 'X 0

* 0.75-

0.50 - Q,

* 0.25 ..- -4

0.00 - T-I tII I 1 11 f

0 10 20 30 40 50 60 70
S

Figure C.9. vs s for a simply supported
[0 16/90 s plate made of material B

C-10



-w 0 0 0 AR= 1, LINEAR
2.5 13oj11 AR=1, NONLINEAR

00000 ) AR=1/2, LINEAR
00000- AR=1/2, NONLINEAR
aA AR=2, LINEAR

* 2.0 . .AR=2, NONLINEAR

*1.5-\1

1.0-
* 0,

0.5-

0.0

*0 10 20 30 40 50 60 '70

S

Figure C.10. W vs s for a simply supported
[0 12 160 /'-6081] plate made of material B

0-1



w -oooo AR=I, LINEAR
" 2.5 9 " ri r AR=1, NONLINEAR

0oo0oo AR=1/2, LINEAR
- %,o o o-o AR=I 2, NONIN'-APAR=2, LINEAR

_2.0 , NONLINEAR

1.5-

1.- \ 0

0.5-

0 10 20 30 40 50 60 70

S

Figure C.11. w vs s for a simply supported
[012 4/-45 (5 plate made of material B

C-i2

0



2.5 -wDD AR-=1, LINEAR
a 93c r3p AR-l, NONLINEAR
o ooooco()AR=l/2, LINEAR

00000AR=2, LNONLNEA
2.0 AA AR=2, NONLINEAR

1.5-

1.0-

0-

0.5-

0 10 20 30 40 50 60 '70
S S

Figure C.12. W vs s for a simply supported
[0 12/45 4/-45 4/90 J 1 plate made of material B

12 4 4 43



1.50 -
-o o E3,E, E, AR=1, LINEAR

*- q-" AR=1, NONLINEAR
0 ooooo AR=1/2, LINEAR

1.25 9Q -o AR=1/2, NONLINEAR
", "AR=2, LINEAR

*AR=2, NONLINEAR
1.00

S 0.75-_

* 0.50-

0.25 _

0.00.
0 10 20 30 40 50 60 70

S

Figure C.13. w vs s for a clamped
[0(11908]s plate made of material B

C-14

"0• . , a



0

0 5

1 w ? AR=I, LINEAR

" 3 E* D AR=I, NONLINEAR
00ooo AR=1/2, LINEAR

1.25 00000AR=1 /2, NONLINEAR
" "AR=2, LINEAR

AR=2, NONLINEAR

1.00

0.75-

0 0.50- -

0.25 -

0.00-
0 10 20 30 40 50 60 70

S

Figure C.i&. w vs s for a clamped
[0 12 Z606/-606]J plate made of material B

C-15

0



w.4 a n o n [ AR= 1 LINEAR
'1DD O 3:, AR=1, NONLINEAR

1.2 oo oo o AR=1/2, LINEAR
2oooAR-1/2 NONLINEAR

, "AR=2, LINEAR
1.0 -AR=2, NONLINEAR

0.8-

0.6-

* 0.4- - f

0.2-

0.
0.0 - i i ) 11111ii l- i i i l' i i I I 1" 11 I i i

0 10 20 30 40 50 60 70
* S

Ss

Figure C.15. w vs s for a clamped
[0 12/45 6/-456] plate made of material B

C-16

. S



1.50
1.50- r3 c, AR-1, LINEAR

C) ,3 n ii AR=1, NONLINEAR

o oooo AR=I/2, LINEAR
1.25 000 o AR=1/2, NONLINEAR

AR=2, LINEAR
_ AR-2, NONLINEAR

* 1.00

0 0.75

0.50

0.25 -

0 .0 0 F T- i ' I I i i l I

0 10 20 30 40 50 60 70
* S

Ss

Figure C.16. 7 vs s for a clamped
(0 1/45 4/-45 4/90 4a plate made of material B

C-17
. . .. . . .12 4 4 4 I



Bibliography

1. Ahmad, S., B. Irons, and O.C. Zienkiewicz. *Analysis of
Thick and Thin Shell Structures by Curved Finite
Elements,* International Journal of Nonlinear Mathematics
in Engineering. 2: 1970.

2. Ashton, J.E. and J.M. Whitney. Theory of Laminated
Plates, Technomic, 1970.

3. Bathe, X.J. and A.P. Cimento. *Some Practical Procedures
for the Solution of Nonlinear Finite Element Equations,'

0 Computer Methods in Applied Mechanics and Engineering,
22: 1980.

4. Bennett, J.A. 'Nonlinear Vibration of Simply Supported
Angle Ply Laminated Plates,* AIAA Journal, 9: 1997-2003,
1971.

5. Bert, C.W. *Nonlinear Vibration of a Rectangular Plate
Arbitrarily Laminated of Anisotropic Material," Journal
of Applied Mechanics, 40: 452-458, 1973.

* 8. Cook, R.D. Concepts and Applications of Finite Element
Analysis, New York: John Wiley and Sons, 1981.

7. Dennis, Capt Scott T. Large Displacement and Rotational
Formulation for Laminated Cylindrical Shells Including
Parabolic Transverse Shear. PhD dissertation. School of

• Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, May 1988 DTIC NUMBER AD-194 871

8. Hildebrand, F.B., E. Reissner, and G.B. Thomas, Notes on
the Foundations of the Theory of Small Displacements of
Orthotropic Shells. NACA-TN-1833, 1949.

9. Hinrichsen, R.L. and A.N. Palazotto. *Nonlinear Finite
Element Analysis of Thick Composite Plates Using a Cubic
Spline Function," AIAA Journal, 24, 11: 198e.

10. John, F. "Estimates for the Derivatives of the Stresses
* in a Thin Shell and Interior Shell Equations,'

Communications on Pure and Applied Mechanics, 18: 1965.

11. Jones, R.J. Mechanics of Composite Materials, Cambridge:
Hemisphere Publishing Co., 1975.

* 12. Koiter, W.T. "A Consistent First Approximation in the
General Theory of Thin Elastic Shells,' Proceedings of
the Symposium on Theory of Thin Elasic Shells.
Amsterdam, North Holland, 1960.

* R-1



13, Koiter, W.T. 'Foundation$ and Basic Equations of shell
Theory-A Survey of Recent Progress," Theory of Thin
Shells, ed by F.I. Niordmon, IUTAM Symposium, Copenhagen,
19e7.

14. Levinson, M. 'An Accurate Simple Theory of the Statics
and Dynamics of Elastic Plates," Mech Research Comm, 7:
1980.

15. Mindlin, R.D. "Influence of Rotatory Inertia and Shear
on Flexural Motions of Isotropic Elastic Plates,"
Journal of Applied Mechanics, 18: 1951.

16. Murthy, M.V.V. An Improved Transverse Shear Deformation
* Theory for Laminated Anisotropic Plates, NASA-TP-1903,

1981.

17. Noor, A.K. and S.J. Hartley "Effect of Shear Deformation
and Isotropy on the Nonlinear Response of Composite
Plates," Developments in Composite Materials - 1. ed
Holister, G., Barking, Essex, England: Applied Science
Publishers, 55-65, 1977.

18. Noor, A.K., M.D. Mathers, and M.S. Anderson. "Exploiting
Symmetries for Efficient Postbuckling Analysis of Composite
Plates," AIAA Journal, 15, 1: 1977.

19. Owen, D.R.J. and E. Hinton Finite Elements in Plasticity
Theory and Practice, Swonsea UK: Pineridge Press, 1980.

20. Pagano, N.J. "Exact Solutions for Composite Laminates in
Cylindrical Bending,' Journal of Composite Materials, 3:

-* 1969.

21. Pagano, N.J. *Influence of Shear Coupling in Cylindrical
Bending of Anisotropic Laminates,' Journal of Composite
Materials, 4: 1970.

• 22. Pagano, N.J. "Exact Solutions for Rectangular Bidirectional
Composites and Sandwich Plates," Journal of Composite
Materials, 4: 1970.

23. Pagano, N.J. "Further Study of Composite Laminates Under
Cylindrical Bending," Journal of Composite Materials, 5:

* 1971.

24. Palazotto, A.N. Class handout distributed in MECH 741,
Advanced Topics in Composites. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB
OH, May 1988.

25. Palazotto, A.N. and W.P. Witt. "Formulation of a
Nonlinear Compatible Finite Element or Analysis of Laminated
Composites,* Computers and Structures, 21, 8: 1985.

*R-2



26. Phan, N.D. and J.N. Reddy. 'Analysis of Laminated
Composite Plates Using a Higher Order Shear Deformation
Theory,* International Journal for Nonlinear Methods in
Engineering, 21: 1985.

27. Pryor, C.W. and R.M. Barker. *A Finite Element Analysis
Including Transverse Shear Effects for Applications to
Laminated Plates," AIAA Journal, 9,5: 1971.

28. Putcha, N.S. and J.N. Reddy. *A Refined Mixed Shear
Flexible Finite Element for the Nonlinear Analysis of
Laminated Plates,' Computers and Structures, 22,4: 1988.

29. Rajasekaran, S. and D.W. Murray. *Incremental Finite
Element Matrices,' Journal of the Structural Division,

• ASCE: 1973.

30. Reddy, J.N. *A Penalty Plate-Bending Element for the
Analysis of Laminated Anisotropic Composite Plates,"
International Journal of Numerical Methods in
Engineering, 2: 1187-120e, 1980.

31. Reddy, J.N. *Analysis of Layered Composite Plates
Accounting for Large Deflections and Transverse Shear
Strains,' in Recent Advances in Nonlinear Computational
Mechanics, eds Hinton, Owen and Taylor, Swansea, UK:
Pinridge Press, 1982.

32. Reddy, J.N. Energy and Variational Methods in Applied
Mechanics. New York: John Wiley and Sons, 1984.

33. Reddy, J.N. 'A Simple Higher Order Theory for Laminated
Composite Plates,* Journal of Applied Mechanics, 51:

• 1984.

34. Reddy, J.N. * A Note on Symmetry Conditions in Transient
Response of Unsymmetrically Laminated Anisotropic Plates,'
International Journal of Nonlinear Mathematics in
Engineering, 20, 1: 1984.

35. Reddy, J.N. and W.C. Chao. 'A Comparison of Closed Form
and Finite Element Solution of Thick Laminated
Anisotropic Rectangular Plates,* Nuclear Engineering and
Design, 64: 1981.

* 38. Reddy, J.N. and W.C. Chao. 'Large Deflection and Large
Amplitude Free Vibrations of Laminated Composite Material
Plates,* Computed Structures, 13, 2: 341-347, 1981.

37. Reddy, J.N. and W.C. Chao. 'Nonlinear Bending of Thick
Rectangular, Laminated Composite Plates," International

* Journal of Nonlinear Mechanics: 1981.

* R- 3



38. Reddy, J.N, and N.D. Phan. 'Stability and Vibration of
Isotropic, Orthotropic, and Laminated Plates According to
a Higher Order Shear Deformation Theory," Journal of
Sound and Vibration, 98(2): 1985.

39. Reissner, E. "The Effect of Transverse Shear Deformation
on the Bending of Elastic Plates,' Journal of Applied
Mechanics, 18: 1945.

* 40. Riks, E. 'Progress in Collapse Analysis, Journal of
Pressure Vessel Technology, 109: 1987.

41. Saada, Adel S. Elasticity Theory and Applications.
Malabar, Florida: Krieger Publishing Company, 1983.

• 42. Srinivas, S. and A.K. Rao. "Bending, Vibration,and
Buckling of Simply Supported Thick Orthotropic
Rectangular Plates and Laminates," International Journal
of Solids and Structures, 8: 1970.

43. Stricklin, J.A. and W.E. Haisler. 'Formulations and
• Solution Procedures for Nonlinear Structural Analysis,'

Computers and Structures, 7: 1977.

44. Szilard, R. Theory and Analysis of Plates Classical and
Numerical Methods Englewood Cliffs, NJ: Prentice-Hall,
1974.

45. Waszczyszyn, Z. 'Numerical Problems of Nonlinear
Stability Analysis of Elastic Structures,' Computers and
Structures, 17,1: 1983.

46. Whitney, J.M. and A.W. Leissa. 'Analysis of Heterogeeious
• Anisotropic Plates,* Journal of Applied Mechanics, 36:

281-286, 1989.

47. Whitney, J.M. and N.J. Pagano. 'Shear Deformation in
Heterogeneous Plates,' Journal of Applied Mechanics,
1970.

48. Yang, P.C., C.H. Norris, and Y. Stavsky. 'Elastic Wave
Propogation in Heterogenious Plates,* International
Journal of Solids and Structures, 2: 1986.

49. Zaghloul, S.A. and J.B. Kennedy. *Nonlinear Analysis of
• Unsymmetrically Laminated Plates,' Journal of the

Engineering Mechanics Division. ASCE, 101,(EM3): 169-185,
1975.

50. Zienkiewicz, O.C., R.D. Taylor,and J.M. Too. "Reduced
Integration Technique in General Analysis of Plates and

* Shells,* International Journal of Nonlinear Mathematics
in Engineering, 3: 1971.

* R-4



Vita

Captain Marc E. Owens was born

SHe graduated from high school in

1978 and attended Oregon State

University, from which he recieved a Bachelor of Science in

Mechanical Engineering in June of 1983. Upon graduation he

recieved his commission in the USAF through the AFROTC

program. He was called to active duty in October of 1983

and was assigned as a munitions test engineer with the

3246th Test Wing, Eglin AFB Florida until he entered the

School of Engineering, Air Force Institute of Technology in

June 1987.

V-i



• UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
, Form Approved

REPORT DOCUMENTATION PAGE OM No. pp4-ro8e

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GAE/AA/88D-29

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENY

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology

Wright-Patterson AFB OH 45433-6583

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
Air Force Office of I
Scientif ic Research I ,_.

6c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

AFOSR PROGRAM PROJECT TASK WORK UNIT

Bolling AFB, D.C. 20332-5000 ELMNTN. 1NO. NOACESON.

1 1. TITLE (Include Security Classification)

FINITE ELEMENT ANALYSIS OF COMPOSITE PLATES INCLUDING SHEAR DEFORMATION

12. PERSONAL AUTHOR(S)

Marc E. Owens, B.S., Capt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

MS Thesis FROM TO 1988 December 155

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Composite Materials Shear Strength

11 04 Finite Element Analysis Nonlinear Systems

12 01 I " Plates Transverse Loads

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Dr. Anthony N. Palazotto

Professor of Aeronautics and Astronautics

Department of Aeronautics and Astronautics

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

Q UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b.I lO rlude rea Code) 12jfhjM BOL

Dr Anthony N. Palazotto, Professor20

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



UNCLASSIFIED

19. cont. - -

The purpose of this research is to study the effects of
material properties,-thickness ratio, aspect ratio, boundary
conditions, and ply layup on the reactions of a transversely
loaded rectangular composite plate. Geometric
nonlinearities, i.e. the von Karman nonlinear plate
equations, and through the thickness shear effects were
included. Both geometrically linear and nonlinear solutions
were done. This research was done using an existing finite
element code with a four-noded, 28 DOF rectangular element.

All plates were 48 plies thick to be representative of
a "real world--application The ply layups were chosen to
be a representative sampi of layups-used in the field and
had at least 5O. of the plies in the 0 direction.

.y-Material properties had the largest effect when the
plate was thick. The linear solution approaches the
classical laminated plate theory solution as the plate gets
thin. The nonlinear solution deflects much less than the
linear solution becauise the higher order terms significantly
stiffen the plate. For a clamped plate the linear and
nonliear solutions are comparible until the plate is quite
thin.

Aspect ratio has a large effect on the plate for an
isotropic material. However, in the ply layups
investigated, aspect ratio had much less effect because half
the fibers were oriented in the direction of the short
dimension of the plate.

Ply layup did not have a great effect on the
deflections of the plate. This occured because all the
layups chosen had at least half the plies oriented in the
same direction. /
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